What is motivic measure?
DOI10.1090/S0273-0979-05-01053-0zbMath1081.14033arXivmath/0312229OpenAlexW2087959827MaRDI QIDQ4663498
Publication date: 31 March 2005
Published in: Bulletin of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0312229
Finite ground fields in algebraic geometry (14G15) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Local ground fields in algebraic geometry (14G20) Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies) (14F43) Algebraic cycles (14C25) Quantifier elimination, model completeness, and related topics (03C10) Generalizations (algebraic spaces, stacks) (14A20) Applications of methods of algebraic (K)-theory in algebraic geometry (14C35)
Related Items
Cites Work
- Germs of arcs on singular algebraic varieties and motivic integration
- Motivic integration on smooth rigid varieties and invariants of degenerations
- Constructible function and motivic integration. I.
- Definable sets, motives and 𝑝-adic integrals
- Uniform p-adic cell decomposition and local zeta functions.
- Intégration motivique sur les schémas formels
- THE GLOBAL MCKAY–RUAN CORRESPONDENCE VIA MOTIVIC INTEGRATION
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item