A proof of the Erdős-Joó-Komornik conjecture in the case of formal power series
From MaRDI portal
Publication:466826
DOI10.1007/S00605-013-0595-XzbMath1303.11117OpenAlexW2018643280WikidataQ122907837 ScholiaQ122907837MaRDI QIDQ466826
Mohamed Mkaouar, Héla Ben Amar, Wiem Gadri
Publication date: 31 October 2014
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00605-013-0595-x
Special sequences and polynomials (11B83) Radix representation; digital problems (11A63) PV-numbers and generalizations; other special algebraic numbers; Mahler measure (11R06) Topological fields (12J99)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series
- \(\beta\)-expansions in algebraic function fields over finite fields
- Developments in non-integer bases
- On a property of Pisot numbers and related questions
- A property of Pisot numbers
- Discrete spectra and Pisot numbers
- An approximation property of Pisot numbers
- Approximation by polynomials with bounded coefficients
- Sur les fractions continues des séries formelles quadratiques sur Fq(X)
- Some computations on the spectra of Pisot and Salem numbers
- Arithmetic Properties of Bernoulli Convolutions
- SUR LE BÊTA-DÉVELOPPEMENT DE 1 DANS LE CORPS DES SÉRIES FORMELLES
- On the sequence of numbers of the form $ε₀ + ε₁q + ... + ε_nq^n$, $ε_i ∈ {0,1}$
- On a problem of Tamas Varga
- Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems
This page was built for publication: A proof of the Erdős-Joó-Komornik conjecture in the case of formal power series