Non-absolutely convergent integrals with respect to distributions
From MaRDI portal
Publication:466960
DOI10.1007/s10231-013-0338-6zbMath1304.26006OpenAlexW2071593333MaRDI QIDQ466960
Publication date: 31 October 2014
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10231-013-0338-6
Operations with distributions and generalized functions (46F10) Denjoy and Perron integrals, other special integrals (26A39) Integral formulas of real functions of several variables (Stokes, Gauss, Green, etc.) (26B20) Antidifferentiation (26A36)
Related Items (8)
Finitely additive measures and complementability of Lipschitz-free spaces ⋮ ISOMETRIC REPRESENTATION OF LIPSCHITZ‐FREE SPACES OVER CONVEX DOMAINS IN FINITE‐DIMENSIONAL SPACES ⋮ On a generalization of Henstock-Kurzweil integrals ⋮ Non-absolutely convergent integrals and singular integrals ⋮ Relations among gauge and Pettis integrals for \(cwk(X)\)-valued multifunctions ⋮ Embeddability of \(\ell_p\) and bases in Lipschitz free \(p\)-spaces for \(0 < p \leq 1\) ⋮ A continuous model of transportation revisited ⋮ Non-absolutely convergent generalized Laplacian
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On embedding uniform and topological spaces
- Density topology and approximate continuity
- Charges in middle dimensions
- The distributional Denjoy integral
- Fine topology methods in real analysis and potential theory
- A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral
- Non-absolutely convergent integrals in metric spaces
- The Perron-Stieltjes integral
- An elementary way to introduce a Perron-like integral
- On Mawhin's approach to multiple nonabsolutely convergent integral
- Generalized ordinary differential equations and continuous dependence on a parameter
- Definitions of Riemann Type of the Variational Integrals
- A new and more powerful concept of the PU-integral
- Weakly Differentiable Functions
- Stokes’ theorem for nonsmooth chains
- The divergence theorem and Perron integration with exceptional sets
- An Invariant Riemann Type Integral Defined by Figures
- A Full Descriptive Definition of the Gage Integral
- A non absolutely convergent integral which admits transformation and can be used for integration on manifolds
- Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes' theorems
- The Gauss-Green theorem
- Functions whose partial derivatives are measures
- Functional analysis and infinite-dimensional geometry
This page was built for publication: Non-absolutely convergent integrals with respect to distributions