Small body surface gravity fields via spherical harmonic expansions
DOI10.1007/s10569-014-9552-9zbMath1298.70019OpenAlexW2037036885MaRDI QIDQ469033
Yu Takahashi, Daniel J. Scheeres
Publication date: 10 November 2014
Published in: Celestial Mechanics and Dynamical Astronomy (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10569-014-9552-9
Poisson's equationspherical harmonicsgravity fieldLaplace's equationasteroidBennuBrillouin sphereCastaliaproximity operationspherical Bessel function
Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Bessel and Airy functions, cylinder functions, ({}_0F_1) (33C10) Celestial mechanics (70F15) Spherical harmonics (33C55) (n)-body problems (70F10)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia
- Recursion formulas of Legendre functions for use with nonsingular geopotential models
- On convergence of an asymmetrical body potential expansion in spherical harmonics
- A conservative numerical technique for collisionless dynamical systems: Comparison of the radial and circular orbit instabilities
- Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering
- On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellite
- [https://portal.mardi4nfdi.de/wiki/Publication:5618566 Le d�veloppement du potentiel dans le cas d'une densit� analytique]
- [https://portal.mardi4nfdi.de/wiki/Publication:5655669 Le d�veloppement du potentiel dans le cas d'une densit� lisse]
This page was built for publication: Small body surface gravity fields via spherical harmonic expansions