Two-primary algebraic đŸ-theory of rings of integers in number fields
DOI10.1090/S0894-0347-99-00317-3zbMath0934.19001OpenAlexW1507724797MaRDI QIDQ4700177
John Rognes, Charles A. Weibel
Publication date: 1 November 1999
Published in: Journal of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0894-0347-99-00317-3
number fieldsétale cohomologymotivic cohomologyLichtenbaum conjectureBloch-Lichtenbaum spectral sequenceLichtenbaum-Quillen conjecturestwo-primary algebraic \(K\)-theory
Ătale and other Grothendieck topologies and (co)homologies (14F20) Computations of higher (K)-theory of rings (19D50) (K)-theory of global fields (11R70) Ătale cohomology, higher regulators, zeta and (L)-functions ((K)-theoretic aspects) (19F27) Motivic cohomology; motivic homotopy theory (14F42) (K)-theory of local fields (11S70)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Class groups of abelian fields, and the main conjecture
- Homology of the infinite orthogonal and symplectic groups over algebraically closed fields. An appendix to the paper of A. Suslin
- Algebraic cycles and higher K-theory
- Continuous étale cohomology
- Ăber gewisse Galoiscohomologiegruppen
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- \(K_i\) groups of rings of algebraic integers
- Ătale descent for two-primary algebraic \(K\)-theory of totally imaginary number fields
- Two-primary algebraic \(K\)-theory of two-regular number fields
- On the groups \(J(X)\). IV
- On the cohomology and K-theory of the general linear groups over a finite field
- On the values of zeta and L-functions. I
- The Iwasawa conjecture for totally real fields
- Algebraic and Etale K-Theory
- Higher algebraic K-theory: I
- Stable real cohomology of arithmetic groups
- Continuous cohomology and p-adic K-theory
- The 2-torsion in the K-theory of the integers