Algorithms and convergence for Hermite interpolation based on extended Chebyshev nodal systems
From MaRDI portal
Publication:470772
DOI10.1016/j.amc.2014.02.027zbMath1303.65004OpenAlexW2127887032MaRDI QIDQ470772
J. R. Illán-González, J. Díaz, Alicia Cachafeiro, Elías Berriochoa
Publication date: 13 November 2014
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2014.02.027
convergenceChebyshev polynomialsHermite-Fejér interpolationHermite interpolationbarycentric expressions
Related Items (5)
Gibbs phenomenon in the Hermite interpolation on the circle ⋮ A note on the rate of convergence for Chebyshev-Lobatto and Radau systems ⋮ A treecode based on barycentric Hermite interpolation for electrostatic particle interactions ⋮ Algorithms, convergence and rate of convergence for an interpolation model between Lagrange and Hermite ⋮ Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An extension of Fejér's condition for Hermite interpolation
- Some improvements to the Hermite-Fejér interpolation on the circle and bounded interval
- Hermite interpolation: The barycentric approach
- Barycentric formulas for interpolating trigonometric polynomials and their conjugates
- Rate of convergence of Hermite-Fejér interpolation on the unit circle
- On quasi-Hermite-Fejér interpolation
- The numerical stability of barycentric Lagrange interpolation
- A Graduate Introduction to Numerical Methods
- A note on Hermite-Fejér interpolation for the unit circle
This page was built for publication: Algorithms and convergence for Hermite interpolation based on extended Chebyshev nodal systems