Représentations $p$-adiques potentiellement cristallines
From MaRDI portal
Publication:4716034
DOI10.24033/bsmf.2285zbMath0887.11048OpenAlexW76025168WikidataQ105584863 ScholiaQ105584863MaRDI QIDQ4716034
Publication date: 7 April 1998
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=BSMF_1996__124_3_375_0
de Rham cohomology and algebraic geometry (14F40) (p)-adic cohomology, crystalline cohomology (14F30) Formal groups, (p)-divisible groups (14L05) Class field theory; (p)-adic formal groups (11S31)
Related Items
Sur la cohomologie galoisienne des corps $p$-adiques, Formal groups and lifts of the field of norms, A theorem on the structure of the ring \(A_{\text{cris}}\), A note on lattices in semi-stable representations, Iwasawa theory and p-adic L-functions over ${\mathbb Z}_{p}^{2}$-extensions, Breuil-Kisin modules and integral \(p\)-adic Hodge theory (with Appendix A by Yoshiyasu Ozeki, and Appendix B by Hui Gao and Tong Liu), Fontaine-Laffaille modules and strongly divisible modules, Canonical<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi></mml:math>-deformations in arithmetic geometry, On flagged framed deformation problems of local crystalline Galois representations, Extensions of rank one (φ,Γ)-modules and crystalline representations, From crystalline to unitary representations, The geometry of Hida families II: -adic -modules and -adic Hodge theory, An explicit formula for the Hilbert symbol of a formal group, Signed Selmer groups over \(p\)-adic Lie extensions, Explicit reciprocity law for Lubin-Tate formal groups, Wach models and overconvergence of étale (\(\varphi,\Gamma\))-modules, On Iwasawa theory of crystalline representations
Cites Work
- On certain types of \(p\)-adic representations of the Galois group of a local field; construction of a Barsott-Tate ring.
- Continuous cohomology and \(p\)-adic Galois representations
- Le corps des normes de certaines extensions infinies de corps locaux; applications
- Construction de représentations $p$-adiques
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item