An existence proof for the stationary compressible Stokes problem
From MaRDI portal
Publication:476091
DOI10.5802/afst.1427zbMath1304.35541OpenAlexW2333262188MaRDI QIDQ476091
A. Fettah, H. Lakehal, Thierry Gallouet
Publication date: 28 November 2014
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.5802/afst.1427
Smoothness and regularity of solutions to PDEs (35B65) PDEs in connection with fluid mechanics (35Q35) Diffusion (76R50) Navier-Stokes equations (35Q30) Weak solutions to PDEs (35D30) Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics (76N10)
Related Items
Cites Work
- The Dirichlet problem for steady viscous compressible flow in three dimensions
- The Dirichlet problem for viscous compressible isothermal Navier-Stokes equations in two dimensions
- Existence of weak solutions to the three-dimensional steady compressible Navier-Stokes equations
- Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions
- A unified method for computing incompressible and compressible flows in boundary-fitted coordinates
- On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable.
- Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime
- A numerical fluid dynamics calculation method for all flow speeds
- Numerical Simulation of Reactive Flow
- A PROOF OF THE INF–SUP CONDITION FOR THE STOKES EQUATIONS ON LIPSCHITZ DOMAINS
- A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case
- Stationary solutions of Navier-Stokes equations for diatomic gases
- A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item