A regularity criterion for axially symmetric solutions to the Navier-Stokes equations
From MaRDI portal
Publication:476664
DOI10.1007/s10958-011-0546-9zbMath1304.35513OpenAlexW1981532218MaRDI QIDQ476664
Publication date: 2 December 2014
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10958-011-0546-9
Smoothness and regularity of solutions to PDEs (35B65) Navier-Stokes equations (35Q30) Weak solutions to PDEs (35D30) Symmetries, invariants, etc. in context of PDEs (35B06) Strong solutions to PDEs (35D35)
Related Items (5)
Regularity via one vorticity component for the 3D axisymmetric MHD equations ⋮ Global regular axially-symmetric solutions to the Navier-Stokes equations with small swirl ⋮ The regularity criteria and the a priori estimate on the 3D incompressible Navier-Stokes equations in orthogonal curvilinear coordinate systems ⋮ Regularity criteria to the incompressible axisymmetric Boussinesq equations ⋮ On regularity criterion to the 3D axisymmetric incompressible MHD equations
Cites Work
- On the singular set and the uniqueness of weak solutions of the Navier- Stokes equations
- Solutions for semilinear parabolic equations in \(L^ p\) and regularity of weak solutions of the Navier-Stokes system
- On the regularity of the axisymmetric solutions of the Navier-Stokes equations
- On smoothness of \(L_{3,\infty}\)-solutions to the Navier-Stokes equations up to boundary
- On axially symmetric flows in \(\mathbb{R}^3\)
- Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique
- Global axially symmetric solutions with large swirl to the Navier-Stokes equations
- Un teorema di unicita per le equazioni di Navier-Stokes
- Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component
- Solution “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables
- L3,∞-solutions of the Navier-Stokes equations and backward uniqueness
- REMARK ON UNIQUENESS OF WEAK SOLUTIONS TO THE NAVIER-STOKES EQUATIONS
- Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet
- An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A regularity criterion for axially symmetric solutions to the Navier-Stokes equations