Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
DOI10.1007/s11425-013-4709-7zbMath1306.65274OpenAlexW2273470334MaRDI QIDQ477075
Publication date: 2 December 2014
Published in: Science China. Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11425-013-4709-7
Estimates of eigenvalues in context of PDEs (35P15) Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the Stokes eigenvalue problem
- Conforming finite element approximations for a fourth-order Steklov eigenvalue problem
- Extrapolation and superconvergence of the Steklov eigenvalue problem
- A two-grid discretization scheme for the Steklov eigenvalue problem
- A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem
- Asymptotic analysis and scaling of friction parameters
- Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods
- Convergence and optimal complexity of adaptive finite element eigenvalue computations
- Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions
- Finite element methods (Part 1)
- A posteriori error estimators for convection-diffusion equations
- Regularity results for elliptic equations in Lipschitz domains
- A finite element solution of an added mass formulation for coupled fluid-solid vibrations
- Local and parallel finite element algorithms for eigenvalue problems
- Superconvergence in Galerkin finite element methods
- Multiscale discretization scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problem
- A priori error estimates of finite volume element method for hyperbolic optimal control problems
- Nonconforming finite element approximations of the Steklov eigenvalue problem
- A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
- A posteriori error estimates for the Steklov eigenvalue problem
- Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems
- Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems
- Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems
- A two-grid discretization scheme for eigenvalue problems
- Isoparametric finite-element approximation of a Steklov eigenvalue problem
- Local and parallel finite element algorithms based on two-grid discretizations
- The effect of reduced integration in the Steklov eigenvalue problem
This page was built for publication: Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems