An adaptive finite element method with asymptotic saturation for eigenvalue problems
DOI10.1007/s00211-014-0624-2zbMath1306.65272OpenAlexW2105853212MaRDI QIDQ478091
Joscha Gedicke, Carsten Carstensen, Volker Mehrmann, Agnieszka Miedlar
Publication date: 3 December 2014
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-014-0624-2
numerical exampleseigenvalue problemsadaptive finite elementasymptotic saturationedge residual a posteriori error estimate
Estimates of eigenvalues in context of PDEs (35P15) Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An oscillation-free adaptive FEM for symmetric eigenvalue problems
- Convergence and optimal complexity of adaptive finite element eigenvalue computations
- Convergence of simple adaptive Galerkin schemes based on \(h - h/2\) error estimators
- Small data oscillation implies the saturation assumption
- Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations
- An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity
- A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems
- On estimators for eigenvalue/eigenvector approximations
- A Posteriori Error Estimates Based on Hierarchical Bases
- A Convergent Adaptive Algorithm for Poisson’s Equation
- Reviving the Method of Particular Solutions
- The Mathematical Theory of Finite Element Methods