Three Finite Classes of Hypergeometric Orthogonal Polynomials and Their Application in Functions Approximation
From MaRDI portal
Publication:4782652
DOI10.1080/10652460212898zbMath1017.33005OpenAlexW1964035032MaRDI QIDQ4782652
Publication date: 2 December 2002
Published in: Integral Transforms and Special Functions (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/10652460212898
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Other special orthogonal polynomials and functions (33C47)
Related Items (max. 100)
A new type of weighted quadrature rules and its relation with orthogonal polynomials ⋮ Unnamed Item ⋮ Weighted quadrature rules with weight function \(x^{-p} e^{-\frac {1}{x}}\) on \([0,\infty )\) ⋮ A basic class of symmetric orthogonal polynomials using the extended Sturm-Liouville theorem for symmetric functions ⋮ Two classes of special functions using Fourier transforms of some finite classes of classical orthogonal polynomials ⋮ Classical orthogonal polynomials with weight function ((ax + b)2 + (cx + d)2)−pexp(qArctg((ax + b)/(cx + d))),x ∈ (−∞, ∞) and a generalization of T and F distributions ⋮ Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials ⋮ On orthogonal polynomials and quadrature rules related to the second kind of beta distribution ⋮ A finite class of \(q\)-orthogonal polynomials corresponding to inverse gamma distribution ⋮ On Romanovski–Jacobi polynomials and their related approximation results ⋮ Fourier transforms of some special functions in terms of orthogonal polynomials on the simplex and continuous Hahn polynomials ⋮ High-order approximation of Pearson diffusion processes ⋮ Incomplete symmetric orthogonal polynomials of finite type generated by a generalized Sturm–Liouville theorem ⋮ On finite classes of two-variable orthogonal polynomials ⋮ Derivatives of a finite class of orthogonal polynomials related to inverse gamma distribution ⋮ Improved energy formula for highly excited vibrational states of Kratzer-Fues oscillator ⋮ Some classes of special functions using Fourier transforms of some two-Variable orthogonal polynomials ⋮ Minimum-uncertainty coherent states of the hyperbolic and trigonometric Rosen-Morse oscillators ⋮ A finite class of orthogonal functions generated by Routh–Romanovski polynomials ⋮ Computational aspects of fractional Romanovski-Bessel functions ⋮ Some applications of a hypergeometric identity ⋮ Spectral representation of transition density of Fisher–Snedecor diffusion ⋮ On constructing new expansions of functions using linear operators ⋮ On numerical integration methods with \(T\)-distribution weight function ⋮ Derivatives of a finite class of orthogonal polynomials defined on the positive real line related to \(F\)-distribution ⋮ Biorthogonal exponential sequences with weight function $\exp(ax^2+ibx)$ on the real line and an orthogonal sequence of trigonometric functions ⋮ A generalization of classical symmetric orthogonal functions using a symmetric generalization of Sturm–Liouville problems ⋮ Statistical Inference for Student Diffusion Process ⋮ A generic polynomial solution for the differential equation of hypergeometric type and six sequences of orthogonal polynomials related to it ⋮ Higher order derivatives of R-Jacobi polynomials ⋮ On Askey-scheme and \(d\)-orthogonality. I: A characterization theorem ⋮ A note on finite quadrature rules with a kind of Freud weight function ⋮ Statistical inference for reciprocal gamma diffusion process ⋮ Fractional Romanovski-Jacobi tau method for time-fractional partial differential equations with nonsmooth solutions ⋮ Old and new results about relativistic Hermite polynomials ⋮ A generalization of Student'st-distribution from the viewpoint of special functions ⋮ Two finite q-Sturm-Liouville problems and their orthogonal polynomial solutions ⋮ SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS ⋮ Some limit relationships between some two-variable finite and infinite sequences of orthogonal polynomials ⋮ Computational and theoretical aspects of Romanovski-Bessel polynomials and their applications in spectral approximations
This page was built for publication: Three Finite Classes of Hypergeometric Orthogonal Polynomials and Their Application in Functions Approximation