S-NOETHERIAN RINGS

From MaRDI portal
Publication:4792641

DOI10.1081/AGB-120013328zbMath1060.13007MaRDI QIDQ4792641

Tiberiu Dumitrescu, Daniel D. Anderson

Publication date: 2002

Published in: Communications in Algebra (Search for Journal in Brave)




Related Items (76)

ON INTEGRAL DOMAINS IN WHICH EVERY ASCENDING CHAIN ON PRINCIPAL IDEALS IS S-STATIONARYRings withS-acc ond-annihilatorsOn S-1-absorbing prime and weakly S-1-absorbing prime idealsNew characterizations of S-coherent ringsS-principal ideal multiplication modulesPairs of domains where all intermediate domains satisfy S-ACCPWhen is (D,K) anS-accr pair?On \(S\)-strong Mori modulesS-Noetherian Rings of the Forms 𝒜[X and 𝒜[[X]]] ⋮ Some results on \(S\)-primary ideals of a commutative ringA generalization of pure submodulesChain conditions on composite Hurwitz series ringsOn S-pseudo-irreducible idealsALMOST MULTIPLICATIVE SETSUnnamed ItemOn \(S\)-weakly prime ideals of commutative ringsOn S-Mori domains\(S\)-Noetherian properties on amalgamated algebras along an idealOn the \(S\)-class group of the monoid algebra \(D[\Gamma\)] ⋮ An extension of $S$--noetherian rings and modulesThe dual notion of $r$-submodules of modulesThe Cohen type theorem and the Eakin-Nagata type theorem for \(S\)-Noetherian rings revisitedOn \(S\)-strong Mori domainsOn $S$-comultiplication modulesUnnamed ItemThe \(S\)-Noetherian ring \(A[X,Y;\lambda\) and Krull dimension] ⋮ \(S\)-prime ideals, \(S\)-Noetherian noncommutative rings, and the \(S\)-Cohen's theoremUnnamed ItemGeneralization of the $S$-Noetherian concept\(S\)-injective modulesEakin-Nagata-Eisenbud theorem for right \(S\)-Noetherian rings$S$-cotorsion modules and dimensionsGeneralization of Artinian rings and the formal power series ringsQuasi- S -primary ideals of commutative ringsOn modules satisfying \(S\)-Noetherian spectrum conditionCharacterizing \(S\)-projective modules and \(S\)-semisimple rings by uniformityUnnamed ItemA note on \(S\)-Nakayama's lemmaOn S-multiplication modulesUnnamed ItemUnnamed ItemUnnamed ItemUnnamed ItemTS-NOETHERIAN PROPERTY ON GENERALIZED POWER SERIES MODULES ⋮ Unnamed Item$\mathcal{F}_{\mathcal{S}}$-MITTAG-LEFFLER MODULES AND GLOBAL DIMENSION RELATIVE TO $\mathcal{F}_{\mathcal{S}}$-MITTAG-LEFFLER MODULESUnnamed ItemUnnamed ItemOn S-GCD domainsUnique factorization and S-Picard groups of domains of power seriesBasic properties of Hurwitz series ringsS-Noetherian spectrum conditionOn right S-Noetherian rings and S-Noetherian modulesS-small and S-essential submodulesOn S-coherenceTHE S-FINITENESS ON QUOTIENT RINGS OF A POLYNOMIAL RINGCharacterizing $S$-flat modules and $S$-von Neumann regular rings by uniformityUnnamed ItemOn S-prime submodulesUnnamed ItemUnnamed ItemThe local \(S\)-class group of an integral domainS-Artinian rings and finitely S-cogenerated ringsModules Satisfying the S-Noetherian Property and S-ACCREndo-Noetherian ringsSome results on modules satisfying \(S\)-strong \(accr^\ast\)On \(S\)-second spectrum of a moduleS-Noetherian Properties of Composite Ring Extensions\(S\)-prime ideals of a commutative ringOn modules satisfying \(S\)-dccr conditionAn extension of S-artinian rings and modules to a hereditary torsion theory settingGeneralizations of Nagata’s theoremUnnamed ItemFully S-coidempotent modulesOn modules related to McCoy modulesOn modules satisfying the descending chain condition on r-submodules



Cites Work


This page was built for publication: S-NOETHERIAN RINGS