On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in \(\mathbb R^3\): a computational approach
DOI10.3934/cpaa.2014.13.2115zbMath1304.65244OpenAlexW2322289266MaRDI QIDQ479343
Roland Glowinski, Andrea Bonito
Publication date: 5 December 2014
Published in: Communications on Pure and Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3934/cpaa.2014.13.2115
finite element methodseigenfunctionsLaplace-Beltrami operatorsurfaceseigenpaireigenvalue/eigenfunction problemNodal linesring torus
Estimates of eigenvalues in context of PDEs (35P15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Elliptic equations on manifolds, general theory (58J05) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- An algorithm for evolutionary surfaces
- Eigenfunctions and nodal sets
- AFEM for Geometric PDE: The Laplace-Beltrami Operator
- Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator
- Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method
- SLEPc
- deal.II—A general-purpose object-oriented finite element library
- Generic Properties of Eigenfunctions
- ARPACK Users' Guide
- On the numerical solution of a semilinear elliptic eigenproblem of Lane–Emden type, II: Numerical experiments