Quantum holonomies for displaced Landau-Aharonov-Casher states
From MaRDI portal
Publication:479423
DOI10.1007/s11128-014-0751-9zbMath1303.81045OpenAlexW2025369974MaRDI QIDQ479423
J. Lemos De Melo, Knut Bakke, Claudio Furtado
Publication date: 5 December 2014
Published in: Quantum Information Processing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11128-014-0751-9
geometric phaseLandau levelsAharonov-Casher systemdisplaced Fock statesholonomic quantum computation
Quantum computation (81P68) Many-body theory; quantum Hall effect (81V70) Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory (81Q70)
Related Items
Cites Work
- Stability of holonomic quantum computations
- Holonomic quantum computation
- Geometric phases and quantum computations
- Quantum holonomies for an electric dipole moment
- Significance of Electromagnetic Potentials in the Quantum Theory
- Quantal phase factors accompanying adiabatic changes
- Generation and Properties of Superpositions of Displaced Fock States
- Displaced and Squeezed Fock States
- GEOMETRIC PHASES AND TOPOLOGICAL QUANTUM COMPUTATION
- Violation of Bell's Inequality by a Generalized Einstein-Podolsky-Rosen State Using Homodyne Detection
- Coherent and Incoherent States of the Radiation Field
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item