LONG TIME ASYMPTOTICS FOR THE SEMICONDUCTOR VLASOV–POISSON–BOLTZMANN EQUATIONS
From MaRDI portal
Publication:4798929
DOI10.1142/S0218202501001513zbMath1013.35011OpenAlexW2015672422MaRDI QIDQ4798929
Ana Carpio, F. J. Mustieles, E. Cebrián
Publication date: 16 March 2003
Published in: Mathematical Models and Methods in Applied Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0218202501001513
Asymptotic behavior of solutions to PDEs (35B40) PDEs in connection with optics and electromagnetic theory (35Q60) Integro-partial differential equations (45K05) Nonlinear first-order PDEs (35F20) Ionized gas flow in electromagnetic fields; plasmic flow (76X05)
Related Items
Cites Work
- Global existence of solutions for the nonlinear Boltzmann equation of semiconductor physics
- Regularity of the moments of the solution of a transport equation
- Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)
- Global existence of weak solutions for a system of non-linear Boltzmann equations in semiconductor physics
- Global weak solutions of Vlasov‐Maxwell systems
- Steady states in plasma physics—the Vlasov-Fokker-Planck equation
- Sur les états d'équilibre pour les densités électroniques dans les plasmas
- Relative entropies for the Vlasov–Poisson system in bounded domains
- Global existence of smooth solutions in three dimensions for the semiconductor vlasov-poisson-boltzmann equation
- On a System of Nonlinear Boltzmann Equations of Semiconductor Physics