A Simple Proof of the Borel Extension Theorem and Weak Compactness of Operators
DOI10.1023/B:CMAJ.0000027224.01146.63zbMath1023.28005MaRDI QIDQ4799997
I. Dobrakov, T. V. Panchapagesan
Publication date: 31 March 2003
Published in: Czechoslovak Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/30735
representing measureregular Borel measurelcHs-valued \(\sigma\)-additive Baire measureregular \(\sigma\)-Borel measureweakly compact operator on \(C_0(T)\)
Vector-valued set functions, measures and integrals (28B05) Linear operators defined by compactness properties (47B07) Set functions and measures on topological spaces (regularity of measures, etc.) (28C15) Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures (28C05)
Related Items (2)
Cites Work
- Fortsetzung von Maßen mit Werten in uniformen Halbgruppen
- Application of a theorem of Grothendieck to vector measures
- On a theorem of Orlicz and Pettis
- L'intégration par rapport à une mesure de Radon vectorielle
- Projections in certain Banach spaces
- Characterizations of weakly compact operators on $C_o(T)$
- On complex Radon measures. II
- Outer Measures with Values in a Topological Group
- Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A Simple Proof of the Borel Extension Theorem and Weak Compactness of Operators