Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien
From MaRDI portal
Publication:4806658
DOI10.1016/S0012-9593(02)01104-7zbMath1125.11351WikidataQ122912984 ScholiaQ122912984MaRDI QIDQ4806658
Denis Benois, Thong Nguyen Quang Do
Publication date: 14 May 2003
Published in: Annales Scientifiques de l’École Normale Supérieure (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=ASENS_2002_4_35_5_641_0
Zeta functions and (L)-functions of number fields (11R42) Polylogarithms and relations with (K)-theory (11G55)
Related Items (7)
Equivariant Main Conjecture, Fitting ideals and annihilators in Iwasawa theory ⋮ Fitting ideals of isotypic parts of even K-groups ⋮ Isotypical indices of cyclotomic elements ⋮ The Bloch-Kato conjecture on special values of \(L\)-functions. A survey of known results. ⋮ Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters ⋮ Zeta functions of regular arithmetic schemes at \(s=0\) ⋮ Hyperbolic tessellations and generators of for imaginary quadratic fields
Cites Work
- On certain types of \(p\)-adic representations of the Galois group of a local field; construction of a Barsott-Tate ring.
- Class groups of abelian fields, and the main conjecture
- Notes on motivic cohomology
- Über gewisse Galoiscohomologiegruppen
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- On the Stickelberger ideal and the circular units of an abelian field
- Relations between \(K_2\) and Galois cohomology
- Unités cyclotomiques, unités semi-locales et \(\mathbb{Z}_\ell\)-extensions
- Classical motivic polylogarithm according to Beilinson and Deligne
- Systèmes d'Euler \(p\)-adiques et théorie d'Iwasawa. (\(p\)-adic Euler systems and Iwasawa theory.)
- Semi-local units modulo cyclotomic units
- Iwasawa theory of \(p\)-adic representations over a local field
- On the equivariant Tamagawa number conjecture for Tate motives
- Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters
- On a construction of \(p\)-units in abelian fields
- Twisted \(S\)-units, \(p\)-adic class number formulas, and the Lichtenbaum conjectures
- Motivic \(L\)-functions and Galois module structures
- Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers.
- Local Units Modulo Circular Units
- A generalisation of the Cassel-Tate pairing.
- Algebraic and Etale K-Theory
- Relative Galois module structure of integers of local abelian fields
- On formulae for the class number of real Abelian fields
- Analogues supérieurs du noyau sauvage
- Formules de classes pour les corps abéliens réels. (Class formulae for real Abelian fields)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien