Représentations lisses de $\textup {GL} (m,D)$ I : caractères simples

From MaRDI portal
Publication:4810340

DOI10.24033/bsmf.2468zbMath1079.22016OpenAlexW2491759273MaRDI QIDQ4810340

Vincent Sécherre

Publication date: 3 September 2004

Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)

Full work available at URL: http://smf4.emath.fr/Publications/Bulletin/132/html/smf_bull_132_327-396.html




Related Items (20)

The inertial Jacquet-Langlands correspondenceBlocks of the category of smooth \(\ell\)-modular representations of \(\mathrm{GL}(n,F)\) and its inner forms: reduction to level 0The centralizer of a classical group and Bruhat-Tits buildings.On the types for supercuspidal representations of inner forms of \(\mathrm{GL}_N\)On the analytic properties of intertwining operators. II: Local degree bounds and limit multiplicitiesRepresentations of a reductive \(p\)-adic group in characteristic distinct from \(p\)Explicit functorial correspondences for level zero representations of \(p\)-adic linear groupsBlock decomposition of the category of smooth \(\ell\)-modular representations of finite length of \(\mathrm{GL}_m(D)\)Cuspidal irreducible complex or \(l\)-modular representations of quaternionic forms of \(p\)-adic classical groups for odd \(p\)Semisimple characters for inner forms. I: \(\mathrm{GL}_m (D)\)Endo-parameters for \(p\)-adic classical groupsSemisimple characters for inner forms II: Quaternionic forms of 𝑝-adic classical groups (𝑝 odd)Geometric conditions for \(\square\)-irreducibility of certain representations of the general linear group over a non-Archimedean local fieldSemisimple characters for \(p\)-adic classical groupsSimple characters for principal orders in \(M_m(D)\)On parabolic induction on inner forms of the general linear group over a non-archimedean local fieldLocal Jacquet-Langlands correspondences for simple supercuspidal representationsThe formal degree of the discrete series representations of \(\mathrm{GL}_m(D)\)Towards an explicit local Jacquet–Langlands correspondence beyond the cuspidal caseReprésentations lisses de GLm(D)GLm(D), III : types simples






This page was built for publication: Représentations lisses de $\textup {GL} (m,D)$ I : caractères simples