Range of the First Three Eigenvalues of the Planar Dirichlet Laplacian
From MaRDI portal
Publication:4827605
DOI10.1112/S1461157000000346zbMath1051.35049arXivmath/0203231OpenAlexW2047734849MaRDI QIDQ4827605
Rustem Yagudin, Michael Levitin
Publication date: 18 November 2004
Published in: LMS Journal of Computation and Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0203231
a priori estimateseigenvaluesDirichlet Laplacianbounded domainisoperimetric estimatesuniversal estimates
Estimates of eigenvalues in context of PDEs (35P15) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction, Optimization of spectral functions of Dirichlet-Laplacian eigenvalues, Bounds for ratios of the membrane eigenvalues, On the inverse spectral problem for Euclidean triangles, On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Isoperimetric bound for \(\lambda{}_ 3 /\lambda{}_ 2\) for the membrane problem
- A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions
- The nodal line of the second eigenfunction of the Laplacian in \(\mathbb{R}^2\) can be closed
- Commutators, spectral trace identities, and universal estimates for eigenvalues
- On the Ratio of Consecutive Eigenvalues
- Proof of the Payne-Pólya-Weinberger conjecture
- Isoperimetric bounds for higher eigenvalue ratios for the n-dimensional fixed membrane problem
- A Hybrid Algorithm for Optimizing Eigenvalues of Symmetric Definite Pencils
- On trace identities and universal eigenvalue estimates for some partial differential operators
- THE RANGE OF VALUES OF λ2/λ1 AND λ3/λ1 FOR THE FIXED MEMBRANE PROBLEM