Convergence of Aluthge iteration in semisimple Lie groups
From MaRDI portal
Publication:482857
DOI10.2969/jmsj/06641127zbMath1305.22012OpenAlexW1998157997WikidataQ115225080 ScholiaQ115225080MaRDI QIDQ482857
Mary Clair Thompson, Tin-Yau Tam
Publication date: 6 January 2015
Published in: Journal of the Mathematical Society of Japan (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.jmsj/1414090237
Subnormal operators, hyponormal operators, etc. (47B20) Semisimple Lie groups and their representations (22E46)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The iterated Aluthge transforms of a matrix converge
- On Aluthge transforms of \(p\)-hyponormal operators
- \(\lambda\)-Aluthge iteration and spectral radius
- Aluthge iteration in semisimple Lie group
- Convergence of the iterated Aluthge transform sequence for diagonalizable matrices. II: \(\lambda \)-Aluthge transform
- The iterated Aluthge transforms of a 2-by-2 matrix converge.
- Complete contractivity of maps associated with the Aluthge and Duggal transforms.
- Some generalized theorems on \(p\)-hyponormal operators
- Convergence of the iterated Aluthge transform sequence for diagonalizable matrices
- \(\lambda\)-Aluthge transforms and Schatten ideals
- On p-hyponormal operators for \(0<p<1\)
- An expression of spectral radius via Aluthge transformation
- On the convergence of Aluthge sequence
- Heinz and McIntosh inequalities, Aluthge transformation and the spectral radius
- Basic indexes and Aluthge transformation for 2 by 2 matrices
- Lie groups beyond an introduction