Verma module annihilators for quantized enveloping algebras
From MaRDI portal
Publication:4855607
DOI10.24033/asens.1723zbMath0838.17011OpenAlexW260559161MaRDI QIDQ4855607
Publication date: 4 June 1996
Published in: Annales scientifiques de l'École normale supérieure (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=ASENS_1995_4_28_4_493_0
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Semisimple Lie groups and their representations (22E46)
Related Items
Rosso's form and quantized Kac-Moody algebras, Equivariant quantization of Poisson homogeneous spaces and Kostant's problem, The Plancherel formula for complex semisimple quantum groups, Comparison of unitary duals of Drinfeld doubles and complex semisimple Lie groups, Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras, On an affine quantum KPRV determinant at \(q=1\), Whittaker modules for \(U_q(\mathfrak{sl}_2)\), On the Kostant-Parthasarathy-Ranga Rao-Varadarajan determinants. III: Computation of the KPRV determinants, Quantum flag varieties, equivariant quantum \(\mathcal D\)-modules, and localization of quantum groups, Quantum symmetric pairs and the reflection equation, On harmonic elements for semi-simple Lie algebras
Cites Work
- Quantum deformations of certain simple modules over enveloping algebras
- Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra
- Moduln mit einem höchsten Gewicht
- Characters of the nullcone
- Local finiteness of the adjoint action for quantized enveloping algebras
- Über die Gelfand-Kirillov-Dimension. (On the Gelfand-Kirillov-dimension)
- On a theorem of Pittie
- Representation of complex semi-simple Lie groups and Lie algebras
- On some unsolved problems in quantum group theory
- A Generalization of the Gelfand-Kirillov Conjecture
- Separation of Variables for Quantized Enveloping Algebras
- On the existence and irreducibility of certain series of representations
- Analogues de la forme de Killing et du théorème d'Harish-Chandra pour les groupes quantiques
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item