On harmonic functions on surfaces with positive Gauss curvature and the Schwarz lemma
From MaRDI portal
Publication:485879
DOI10.1216/RMJ-2014-44-5-1585zbMath1303.31006WikidataQ124828713 ScholiaQ124828713MaRDI QIDQ485879
Publication date: 14 January 2015
Published in: Rocky Mountain Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.rmjm/1420071554
Maximum principle, Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination (30C80) Harmonic, subharmonic, superharmonic functions on other spaces (31C05)
Related Items (4)
Quasihyperbolic quasi-isometry and Schwarz lemma of planar flat harmonic mappings ⋮ Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings ⋮ Schwarz lemma for real harmonic functions onto surfaces with non-negative Gaussian curvature ⋮ Schwarz-Pick type estimates for gradients of pluriharmonic mappings of the unit ball
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inner estimate and quasiconformal harmonic maps between smooth domains
- A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions
- Close-to-convex schlicht functions
- A Schwarz lemma for the modulus of a vector-valued analytic function
- On harmonic functions and the Schwarz lemma
This page was built for publication: On harmonic functions on surfaces with positive Gauss curvature and the Schwarz lemma