Integration of complex polynomial differential equations in higher dimension, a first step: Lie transverse structure
From MaRDI portal
Publication:487051
DOI10.1007/s00574-014-0060-zzbMath1305.32013OpenAlexW2048335339MaRDI QIDQ487051
Yoshikazu Yamagishi, Toshikazu Ito, Bruno C. Azevedo Scárdua
Publication date: 19 January 2015
Published in: Bulletin of the Brazilian Mathematical Society. New Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00574-014-0060-z
Singularities of holomorphic vector fields and foliations (32S65) Complex vector fields, holomorphic foliations, (mathbb{C})-actions (32M25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Problèmes de modules pour des équations différentielles non linéaires du premier ordre
- Invariant varieties through singularities of holomorphic vector fields
- Foliations: geometric studies
- On Liouville's theory of elementary functions
- Transversely homogeneous foliations
- Irreducible components of the space of holomorphic foliations
- Integration of complex differential equations
- Foliations invariant under Lie group transverse actions
- On fibering certain foliated manifolds over \(S^1\)
- Iteration of analytic functions
- Holomorphic foliations with Liouvillian first integrals
- ONE-DIMENSIONAL LIE FOLIATIONS WITH GENERIC SINGULARITIES IN COMPLEX DIMENSION THREE
- Classification analytique des équations différentielles non linéaires résonnantes du premier ordre
- A geometric characterization of linear hyperbolic flows on $\mathbb{C}^n$
- Liouvillian First Integrals of Differential Equations
- Transversely affine and transversely projective holomorphic foliations
- Reduction of Singularities of the Differential Equation Ady = Bdx
- Anosov Flows
This page was built for publication: Integration of complex polynomial differential equations in higher dimension, a first step: Lie transverse structure