Galois representations and modular forms
DOI10.1090/S0273-0979-1995-00616-6zbMath0849.11008arXivmath/9503219WikidataQ56336426 ScholiaQ56336426MaRDI QIDQ4884443
Publication date: 19 November 1996
Published in: Bulletin of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/9503219
surveydeformationsmodular formsFermat's Last TheoremGalois representationsepsilon conjectureTaniyama-Shimura conjectureSerre's conjecturesFrey's construction
Elliptic curves over global fields (11G05) Research exposition (monographs, survey articles) pertaining to number theory (11-02) Elliptic curves (14H52) Higher degree equations; Fermat's equation (11D41) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Deforming Galois representations: Controlling the conductor
- Finiteness theorems for abelian varieties over number fields.
- There are no abelian varieties over \(\mathbb Z\).
- On the modular representations of degree two of \(\text{Gal}({\overline {\mathbb Q}}/{\mathbb Q})\)
- Galois representations, Kähler differentials and ``main conjectures
- Modular functions of one variable. IV. Proceedings of the international summer school, University of Antwerp, RUCA, July 17 -- August 3, 1972
- Rational isogenies of prime degree. (With an appendix by D. Goldfeld)
- Modular curves and the Eisenstein ideal
- Newforms and functional equations
- A finiteness theorem for the symmetric square of an elliptic curve
- On modular representations of \(\text{Gal}(\overline{\mathbb Q}/\mathbb Q)\) arising from modular forms
- Modular elliptic curves and Fermat's Last Theorem
- Ring-theoretic properties of certain Hecke algebras
- Complete systems of two addition laws for elliptic curves
- On deformation rings and Hecke rings
- Good reduction of abelian varieties
- Hecke operators on \(\Gamma_0(m)\)
- On automorphic forms on \(mathrm{GL}_2\) and Hecke operators
- Galois properties of points of finite order of elliptic curves
- Class fields over real quadratic fields and Hecke operators
- On the factors of the Jacobian variety of a modular function field
- Algorithm for determining the type of a singular fiber in an elliptic pencil
- Introduction to Abelian Varieties
- Old and new conjectured diophantine inequalities
- From the Taniyama-Shimura conjecture to Fermat's last theorem
- Artin’s conjecture for representations of octahedral type
- Number Theory as Gadfly
- Formes modulaires de poids $1$
- "A Marvelous Proof"
- Introduction to Fermat's Last Theorem
- A report on Wiles’ Cambridge lectures
- Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert
- The Shimura-Taniyama conjecture (d'après Wiles)
- A reciprocity law in non-solvable extensions.
- Elliptic Curves and Wild Ramification
- On Elliptic Curves with Complex Multiplication as Factors of the Jacobians of Modular Function Fields