Frontier estimation using kernel smoothing estimators with data transformation
From MaRDI portal
Publication:488593
DOI10.1016/J.JKSS.2014.07.005zbMath1304.62145OpenAlexW1972977426MaRDI QIDQ488593
Publication date: 26 January 2015
Published in: Journal of the Korean Statistical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jkss.2014.07.005
monotonicityconcavitylinear programmingbandwidth selectiontransformed dataconstrained kernel smoothing estimatorPriestly-Chao estimator
Applications of statistics to economics (62P20) Density estimation (62G07) Nonparametric estimation (62G05) Integer programming (90C10)
Related Items (3)
A New Mathematical Model for the Efficiency Calculation ⋮ Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis ⋮ ROBUSTIFIED EXPECTED MAXIMUM PRODUCTION FRONTIERS
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Linear smoothers and additive models
- Linearly interpolated FDH efficiency score for nonconvex frontiers
- On polynomial estimators of frontiers and boundaries
- Nonparametric kernel regression subject to monotonicity constraints
- New methods for bias correction at endpoints and boundaries
- Efficient estimation of monotone boundaries
- Frontier estimation via kernel regression on high power-transformed data
- Design-adaptive Nonparametric Regression
- Versions of Kernel-Type Regression Estimators
- On Estimation of Monotone and Concave Frontier Functions
- Hazard analysis. I
- On Non-Parametric Estimates of Density Functions and Regression Curves
This page was built for publication: Frontier estimation using kernel smoothing estimators with data transformation