Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Fixed points of elliptic reversible transformations with integrals

From MaRDI portal
Publication:4892464
Jump to:navigation, search

DOI10.1017/S0143385700009044zbMath0855.58051arXivmath/9506201MaRDI QIDQ4892464

Xianghong Gong

Publication date: 11 February 1997

Published in: Ergodic Theory and Dynamical Systems (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/math/9506201


zbMATH Keywords

normal formperiodic pointselliptic reversible transformations with integrals


Mathematics Subject Classification ID

Normal forms for dynamical systems (37G05) Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems (37K35)


Related Items

Geometry of hyperbolic Cauchy-Riemann singularities and KAM-like theory for holomorphic involutions



Cites Work

  • Über die Existenz einer Normalform inhaltstreuer elliptischer Transformationen
  • Normal forms for real surfaces in \(C^ 2\) near tangents and hyperbolic surface transformations
  • On the convergence of normalizations of real analytic surfaces near hyperbolic complex tangents
  • Differentiable manifolds in complex Euclidean space
  • Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung
  • Reversible Diffeomorphisms and Flows


This page was built for publication: Fixed points of elliptic reversible transformations with integrals

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:4892464&oldid=19278812"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 8 February 2024, at 06:40.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki