scientific article; zbMATH DE number 6127266
From MaRDI portal
Publication:4903239
zbMath1328.11114MaRDI QIDQ4903239
Publication date: 21 January 2013
Full work available at URL: https://projecteuclid.org/euclid.nmj/1354716555
Title: zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Modular and Shimura varieties (14G35) Representation-theoretic methods; automorphic representations over local and global fields (11F70) Langlands-Weil conjectures, nonabelian class field theory (11S37)
Related Items (3)
Drinfeld symmetric space and local Langlands correspondence. II ⋮ Representations of \(p\)-adic groups over commutative rings ⋮ THE -MODULAR LOCAL LANGLANDS CORRESPONDENCE AND LOCAL CONSTANTS
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Coxeter orbits and Brauer trees.
- \(\ell\)-integral nonabelian Lubin-Tate theory
- Nonabelian Lubin-Tate theory and elliptic representations
- Identification of the irreducible modular representations of \(GL_n(q)\).
- La conjecture de Weil. II
- On the finiteness of the number of unipotent classes
- On quotients of Hom-functors and representations of finite general linear groups. II
- Induced \(R\)-representations of \(p\)-adic reductive groups
- The cohomology of \(p\)-adic symmetric spaces
- \(l\)-modular representations of a \(p\)-adic reductive group with \(l\neq p\)
- Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties
- A lemma on nearby cycles and its application to the tame Lubin-Tate space
- Deformation spaces of one-dimensional formal modules and their cohomology
- On extensions of generalized Steinberg representations
- Triangulated Categories
- Resolutions for representations of reductive p-adic groups via their buildings
- Coxeter Orbits and Modular Representations
- Finitude pour les représentations lisses de groupes p-adiques
- Opérateur de Lefschetz sur les tours de Drinfeld et Lubin–Tate
- Un cas simple de correspondance de Jacquet-Langlands modulo ℓ
- Espaces symétriques de Drinfeld et correspondance de Langlands locale
- Semisimple Langlands correspondence for \(\operatorname {GL}(n,F)\bmod \ell\neq p\)
This page was built for publication: