Local Linear Estimation of Recurrent Jump—Diffusion Models
DOI10.1080/03610926.2011.569680zbMath1284.60148OpenAlexW2083512733MaRDI QIDQ4904678
No author found.
Publication date: 31 January 2013
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2011.569680
stochastic differential equationasymptotic normalitylocal timenonparametric estimationjump-diffusion modellocal linear estimationHarris recurrence
Asymptotic properties of nonparametric inference (62G20) Nonparametric estimation (62G05) Nonparametric tolerance and confidence regions (62G15) Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) Diffusion processes (60J60)
Related Items (13)
Cites Work
- Unnamed Item
- Unnamed Item
- Empirical likelihood inference for diffusion processes with jumps
- Threshold estimation of Markov models with jumps and interest rate modeling
- Testing for jumps in a discretely observed process
- Variable bandwidth and local linear regression smoothers
- On the functional estimation of jump-diffusion models.
- Multivariate locally weighted least squares regression
- Optimal global rates of convergence for nonparametric regression
- Estimating stochastic volatility diffusion using conditional moments of integrated volatility
- Reweighted Nadaraya-Watson estimation of jump-diffusion models
- Local linear regression smoothers and their minimax efficiencies
- Empirical likelihood-based inference for nonparametric recurrent diffusions
- On estimating the diffusion coefficient from discrete observations
- A Reexamination of Diffusion Estimators With Applications to Financial Model Validation
- Transform Analysis and Asset Pricing for Affine Jump-diffusions
- Fully Nonparametric Estimation of Scalar Diffusion Models
- [https://portal.mardi4nfdi.de/wiki/Publication:5564837 Mesure invariante sur les classes r�currentes des processus de Markov]
This page was built for publication: Local Linear Estimation of Recurrent Jump—Diffusion Models