Thomson scattering in the high intensity regime

From MaRDI portal
Publication:4911647

DOI10.1088/0031-8949/83/05/055404zbMATH Open1263.81259arXiv1011.0066OpenAlexW2043830424MaRDI QIDQ4911647

Andreea Oprea, M. Boca

Publication date: 20 March 2013

Published in: Physica Scripta (Search for Journal in Brave)

Abstract: The subject of this paper is the scattering of a very intense laser pulse (intensity Isim1021;mathrmW/cm2) on relativistic electrons with Lorentz factor between 10 and 45. The laser pulse is modeled by a plane wave with finite length and the calculations are performed within the framework of the classical electrodynamics, which is valid for the field intensity and range of electron energies we consider. For a pulse with the central wavelength lambda=1060;mathrmnm and circular polarization, we study systematically the angular distribution of the emitted radiation, dW/dOmega, in its dependence on the electron energy for two collision geometries: the head-on collision (counterpropagating electron and laser pulse), and the 90 degrees collision (the initial electron momentum orthogonal to the laser propagation direction). We investigate the relation between dW/dOmega and the trajectory followed by the electron velocity during the laser pulse and, for the case of a short laser pulse, we discuss the carrier-envelope phase effects. We also present, for the two mentioned geometries, an analysis of the polarization of the emitted radiation and a comparison of the results predicted by the exact classical formula with a high-energy approximation of it.


Full work available at URL: https://arxiv.org/abs/1011.0066











This page was built for publication: Thomson scattering in the high intensity regime

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q4911647)