On unramified Galois $2$-groups over $\mathbb Z_2$-extensions of real quadratic fields
From MaRDI portal
Publication:4929978
DOI10.1090/S0002-9939-10-10458-4zbMath1225.11138MaRDI QIDQ4929978
Publication date: 27 September 2010
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Related Items
On metabelian 2-class field towers over -extensions of real quadratic fields, The structure of the unramified abelian Iwasawa module of some number fields, Local behavior of Iwasawa’s invariants, On \(p\)-class groups of relative cyclic \(p\)-extensions, A note on semidihedral 2-class field towers and \(\mathbb {Z}_{2}\)-extensions, On the Iwasawa λ-invariant of the cyclotomic ℤ2-extension of ℚ(pq) and the 2-part of the class number of ℚ(pq,2 + 2), On pro-𝑝 link groups of number fields
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Iwasawa invariants of the cyclotomic \(\mathbb Z_2\)-extensions of certain real quadratic fields
- On the \(p\)-class tower of a \(\mathbb Z_p\)-extension
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- Real quadratic fields with abelian 2-class field tower
- Remarks on \(\mathbb{Z}_ p\)-extensions of number fields
- On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb Z_2\)-extension of a real quadratic field
- Sur le rang du 2-groupe de classes de 𝑄({√{𝑚}},{√{𝑑}}) où 𝑚=2 ou un premier 𝑝≡1(𝑚𝑜𝑑4)
- On the Iwasawa Invariants of Totally Real Number Fields
- Capitulation des 2-classes d'idéaux de Q(\sqrt 2,\sqrt d) où d est un entier naturel sans facteurs carrés
- On the Class Number of a Relatively Cyclic Number Field