The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves
From MaRDI portal
Publication:493516
DOI10.1007/s11511-015-0127-8zbMath1332.12012arXiv1209.3663OpenAlexW3098101857WikidataQ115377887 ScholiaQ115377887MaRDI QIDQ493516
Publication date: 3 September 2015
Published in: Acta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1209.3663
finitenesscontinuityNewton polygonradius of convergenceBerkovich spaces\(p\)-adic differential equationsextension of scalarsuniversal points
Related Items (11)
Infinitesimal deformation of \(p\)-adic differential equations on Berkovich curves ⋮ Spectrum of \(p\)-adic linear differential equations. I: The shape of the spectrum ⋮ Bruhat-Tits theory from Berkovich's point of view. Analytic filtrations ⋮ Spectrum of a linear differential equation with constant coefficients ⋮ The convergence Newton polygon of a \(p\)-adic differential equation. I: Affinoid domains of the Berkovich affine line ⋮ The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves ⋮ Riemann-Hurwitz formula for finite morphisms of \(p\)-adic curves ⋮ Metric uniformization of morphisms of Berkovich curves via \(p\)-adic differential equations ⋮ Convergence Polygons for Connections on Nonarchimedean Curves ⋮ Radiality of definable sets ⋮ DEFINABLE SETS OF BERKOVICH CURVES
Cites Work
- The convergence Newton polygon of a \(p\)-adic differential equation. I: Affinoid domains of the Berkovich affine line
- The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves
- Continuity of the radius of convergence of differential equations on \(p\)-adic analytic curves
- Berkovich spaces are excellent
- Continuity and finiteness of the radius of convergence of a \(p\)-adic differential equation via potential theory
- Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume
- Maximally complete fields
- Étale cohomology for non-Archimedean analytic spaces
- Berkovich spaces, polytopes, skeleton, and model theory
- Berkovich spaces on \(\mathbb Z\): local study
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Local and global structure of connections on nonarchimedean curves
- Triangulations et cohomologie étale sur une courbe analytique 𝑝-adique
- Sur les automorphismes continus d'extensions transcendantes valuées.
- On Ordinary Linear p-Adic Differential Equations
- Stable modification of relative curves
- Variation de la dimension relative en géométrie analytique p-adique
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves