Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On maximum likelihood estimation of the binomial parameter n

From MaRDI portal
Publication:4944648
Jump to:navigation, search

DOI10.2307/3316115zbMath0941.62023OpenAlexW2081686895MaRDI QIDQ4944648

Yining Wang, Arjun K. Gupta, Truc T. Nguyen

Publication date: 22 June 2000

Published in: Canadian Journal of Statistics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.2307/3316115


zbMATH Keywords

completenessunbiasednessunimodalityancillarity


Mathematics Subject Classification ID

Asymptotic properties of parametric estimators (62F12) Point estimation (62F10)




Cites Work

  • Compound multinomial likelihood functions are unimodal: Proof of a conjecture of I. J. Good
  • Sufficient conditions for unimodality of the positive binomial likelihood function
  • A characterization of certain discrete exponential families
  • The Likelihood Ratio Test for Poisson Versus Binomial Distributions
  • Confidence Bounds For The Binomial N Parameter: A Classical Approach
  • Inference for the binomial N parameter: A hierarchical Bayes approach
  • A Comparison of n Estimators for the Binomial Distribution
  • Unimodality of Likelihood Functions for the Binomial Distribution
  • On the Erratic Behavior of Estimators of N in the Binomial N, p Distribution
  • Bayesian Estimation of the Binomial Parameter


This page was built for publication: On maximum likelihood estimation of the binomial parameter n

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:4944648&oldid=19362990"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 8 February 2024, at 08:58.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki