Conjugate points on the symplectomorphism group
DOI10.1007/s10455-015-9461-5zbMath1329.35228OpenAlexW2165650791MaRDI QIDQ494734
Publication date: 2 September 2015
Published in: Annals of Global Analysis and Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10455-015-9461-5
Euler equationsHilbert manifoldgeodesichydrodynamicsconjugate pointFredholm mapdiffeomorphism groupplasma dynamics
PDEs in connection with fluid mechanics (35Q35) Hydrodynamic stability (76E99) Hamiltonian systems on groups of diffeomorphisms and on manifolds of mappings and metrics (37K65) Euler-Poisson-Darboux equations (35Q05) Spectral theory; eigenvalue problems on manifolds (58C40) Calculus on manifolds; nonlinear operators (58C99) Nonlinear operators and their properties (47H99)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Geodesics on the symplectomorphism group
- Infinite-dimensional Lie groups and algebras in mathematical physics
- On the volumorphism group, the first conjugate point is always the hardest
- The Hamiltonian structure of the Maxwell-Vlasov equations
- Generalized fluid flows, their approximation and applications
- Topological methods in hydrodynamics
- For ideal fluids, Eulerian and Lagrangian instabilities are equivalent
- Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogene, incompressible, pendant un temps infiniment long
- Geodesic Vlasov equations and their integrable moment closures
- Singularities of the exponential map on the volume-preserving diffeomorphism group
- Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications à l'hydrodynamique des fluides parfaits
- Groups of diffeomorphisms and the motion of an incompressible fluid
- One-Parameter Semigroups for Linear Evolution Equations
- Conjugate points in $\mathcal {D}_{\mu }(T^2)$
- Hilbert Manifolds Without Epiconjugate Points
This page was built for publication: Conjugate points on the symplectomorphism group