The complexity of pure equilibria in mix-weighted congestion games on parallel links
From MaRDI portal
Publication:495670
DOI10.1016/J.IPL.2015.07.012zbMath1338.68114OpenAlexW934731919MaRDI QIDQ495670
Marios Mavronicolas, Burkhard Monien
Publication date: 15 September 2015
Published in: Information Processing Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.ipl.2015.07.012
Analysis of algorithms and problem complexity (68Q25) Noncooperative games (91A10) Games involving graphs (91A43) Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.) (68Q17)
Cites Work
- Unnamed Item
- Worst-case equilibria
- The structure and complexity of Nash equilibria for a selfish routing game
- Congestion games with player-specific payoff functions
- A class of games possessing pure-strategy Nash equilibria
- Selfish unsplittable flows
- On the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games
- Routing (un-) splittable flow in games with player-specific affine latency functions
- On the impact of combinatorial structure on congestion games
- Complexity of Pure Nash Equilibria in Player-Specific Network Congestion Games
- The complexity of pure Nash equilibria
- Bounds for Certain Multiprocessing Anomalies
- Atomic resource sharing in noncooperative networks
This page was built for publication: The complexity of pure equilibria in mix-weighted congestion games on parallel links