Copies of \(c_0\) in the space of Pettis integrable functions revisited
From MaRDI portal
Publication:496403
DOI10.1007/s13398-014-0205-3zbMath1321.28024OpenAlexW1981008023MaRDI QIDQ496403
Luis Manuel Sánchez Ruiz, Matilde Legua
Publication date: 21 September 2015
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-014-0205-3
Isomorphic theory (including renorming) of Banach spaces (46B03) Vector-valued set functions, measures and integrals (28B05)
Cites Work
- A dual geometric characterization of Banach spaces not containing \(l_ 1\).
- Banach spaces of vector-valued functions
- Copies of \(c_0\) in the space of Pettis integrable functions with integrals of finite variation
- Embedding c0 in bvca(Σ, X)
- Evaluating norms of Pettis integrable functions
- EMBEDDING C0IN THE SPACE OF PETTIS INTEGRABLE FUNCTIONS
- On Sums of Pettis Integrable Random Elements
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Copies of \(c_0\) in the space of Pettis integrable functions revisited