A combinatorial approach to asymptotic behavior of Kirillov model for $GL_2$
From MaRDI portal
Publication:4973799
DOI10.4134/CKMS.c180431zbMath1467.11050OpenAlexW3035987268MaRDI QIDQ4973799
Publication date: 5 December 2019
Full work available at URL: http://koreascience.or.kr/journal/view.jsp?kj=DBSHCJ&py=2019&vnc=v34n4&sp=1117
Representation theory for linear algebraic groups (20G05) (p)-adic theory, local fields (11F85) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Mathematics for the analysis of algorithms.
- Local factors of nongeneric supercuspidal representations of \(\mathrm{GSp}_4\)
- \(L\)-factor of irreducible \(\chi_1 \times\chi_2 \rtimes\sigma\)
- Regular poles for the p-adic group $GSp_4$-II
- Les Constantes des Equations Fonctionnelles des Fonctions L
- On irreducibility of standard modules for generic representations
- Regular poles for the p-adic group $GSp_4$
This page was built for publication: A combinatorial approach to asymptotic behavior of Kirillov model for $GL_2$