Hom-structures on simple graded Lie algebras of finite growth
From MaRDI portal
Publication:4975390
DOI10.1142/S0219498817501547zbMath1425.17028WikidataQ115245641 ScholiaQ115245641MaRDI QIDQ4975390
Publication date: 4 August 2017
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
Related Items
Regular Hom–Lie structures on strictly upper triangular matrix Lie algebras ⋮ Regular Hom-Lie structures on Borel subalgebras of finite-dimensional simple Lie algebras ⋮ Regular Hom-Lie structures on incidence algebras ⋮ Transposed Poisson structures ⋮ When Hom-Lie structures form a Jordan algebra ⋮ Hom-Lie structures on Kac-Moody algebras
Cites Work
- Hom-structures on semi-simple Lie algebras
- Hom-Lie 2-algebras
- Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
- Representations of hom-Lie algebras
- Infinite dimensional Lie algebras. An introduction
- Weyl modules for the twisted loop algebras
- Derivations and central extensions of finitely generated graded Lie algebras
- Classification of simple graded Lie algebras of finite growth
- Hom-Lie superalgebra structures on infinite-dimensional simple Lie superalgebras of vector fields
- Deformations of Lie algebras using \(\sigma\)-derivations
- Hom-Lie algebra structures on semi-simple Lie algebras
- Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities
- Quasi-Deformations of 𝔰𝔩2(𝔽) Using Twisted Derivations
- SIMPLE IRREDUCIBLE GRADED LIE ALGEBRAS OF FINITE GROWTH
- Unnamed Item
- Unnamed Item
- Unnamed Item