Parametrically Assisted Nonparametric Estimation of a Density in the Deconvolution Problem
From MaRDI portal
Publication:4975411
DOI10.1080/01621459.2013.857611zbMath1367.62104OpenAlexW2111545434MaRDI QIDQ4975411
Publication date: 4 August 2017
Published in: Journal of the American Statistical Association (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/01621459.2013.857611
Related Items
A deconvolution path for mixtures, Unnamed Item, Density deconvolution for generalized skew-symmetric distributions, On the performance of weighted bootstrapped kernel deconvolution density estimators
Cites Work
- Minimum distance density-based estimation
- Adaptively local one-dimensional subproblems with application to a deconvolution problem
- On the optimal rates of convergence for nonparametric deconvolution problems
- Practical bandwidth selection in deconvolution kernel density estimation
- Density estimation with heteroscedastic error
- Local quasi-likelihood with a parametric guide
- Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes
- Locally parametric nonparametric density estimation
- Semiparametric density estimation by local \(L_ 2\)-fitting.
- Nonparametric density estimation with a parametric start
- Asymptotic normality of a combined regression estimator
- Semiparametric Density Deconvolution
- A consistent nonparametric density estimator for the deconvolution problem
- Deconvolving kernel density estimators
- Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems
- Density Estimation in the Presence of Heteroscedastic Measurement Error
- A Class of Local Likelihood Methods and Near-Parametric Asymptotics
- Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error
- Local Polynomial Regression and Simulation–Extrapolation
- Estimation of Integrated Squared Density Derivatives from a Contaminated Sample
- A simple bias reduction method for density estimation
- A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem
- Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error
- Measurement Error in Nonlinear Models