Taylor problem for the zero-order model of an incompressible viscoelastic fluid
From MaRDI portal
Publication:498277
DOI10.1134/S0012266115060099zbMath1330.35348OpenAlexW948141676MaRDI QIDQ498277
O. P. Matveeva, Tamara G. Sukacheva
Publication date: 28 September 2015
Published in: Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s0012266115060099
Related Items (4)
ANALYSIS OF THE CLASS OF HYDRODYNAMIC SYSTEMS ⋮ Oskolkov Models and Sobolev-Type Equations ⋮ The Rate of Convergence of Hypersingular Equations Numerical Computation ⋮ The Navier-Stokes-Voigt equations with position-dependent slip boundary conditions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Initial-boundary value problems for the equations of motion of Kelvin- Voigt fluids and Oldroyd fluids
- Cauchy problem for a class of semilinear equations of Sobolev type
- The Hopf bifurcation and its applications. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt, and S. Smale
- On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
- Linear Sobolev type equations and degenerate semigroups of operators
This page was built for publication: Taylor problem for the zero-order model of an incompressible viscoelastic fluid