Quantum Kirwan morphism and Gromov-Witten invariants of quotients. II
From MaRDI portal
Publication:498948
DOI10.1007/s00031-015-9323-zzbMath1360.14138arXiv1408.5864OpenAlexW4255230566MaRDI QIDQ498948
Publication date: 29 September 2015
Published in: Transformation Groups (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1408.5864
Related Items
Properness for scaled gauged maps ⋮ The moduli space of twisted holomorphic maps with Lagrangian boundary condition: compactness ⋮ Vortices on surfaces with cylindrical ends ⋮ Quantum Kirwan morphism and Gromov-Witten invariants of quotients. III ⋮ Equivariant Lagrangian Floer homology via cotangent bundles of EGN$EG_N$ ⋮ A wall-crossing formula for Gromov-Witten invariants under variation of git quotient ⋮ Residue Mirror Symmetry for Grassmannians ⋮ Atiyah-Floer conjecture: A formulation, a strategy of proof and generalizations ⋮ Classification of U(1)-vortices with target ℂN ⋮ Classification of affine vortices ⋮ A Quantum Kirwan Map, I: Fredholm Theory ⋮ Quantum cohomology and toric minimal model programs ⋮ Quantum Kirwan morphism and Gromov-Witten invariants of quotients. I
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Yang-Mills heat flow on gauged holomorphic maps
- Group actions on stacks and applications
- Quotients by groupoids
- Classification of affine vortices
- A compactification of the moduli space of twisted holomorphic maps
- Intersection theory on algebraic stacks and on their moduli spaces
- Geometric invariant theory and decorated principal bundles
- Moduli for principal bundles over algebraic curves. I
- Canonical rational equivalence of intersections of divisors
- Mirror principle. I
- Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations
- Versal deformations and algebraic stacks
- Localization of virtual classes
- A compactification of configuration spaces
- Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties
- The intrinsic normal cone
- Equivariant intersection theory (With an appendix by Angelo Vistoli: The Chow ring of \({\mathcal M}_2\))
- Stable maps and Quot schemes
- Stacks of stable maps and Gromov-Witten invariants
- Cycle groups for Artin stacks
- A universal construction for moduli spaces of decorated vector bundles over curves
- Quantum Kirwan morphism and Gromov-Witten invariants of quotients. I
- Deformation theory of representable morphisms of algebraic stacks
- Wall crossing for symplectic vortices and quantum cohomology
- \(\underline{\Hom}\)-stacks and restriction of scalars
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Stable and unitary vector bundles on a compact Riemann surface
- The irreducibility of the space of curves of a given genus
- Compactifying the space of stable maps
- Vortex invariants and toric manifolds
- Twisted stable maps to tame Artin stacks
- Geometry of Algebraic Curves
- Remarks on the stack of coherent algebras
- (Log) twisted curves
- Sheaves on Artin stacks
- Gromov-Witten theory of Deligne-Mumford stacks
- Geometric realizations of the multiplihedra
- Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds
- Notes on stable maps and quantum cohomology
- Quot Functors for Deligne-Mumford Stacks
- A Hitchin-Kobayashi correspondence for Kähler fibrations
- On Moduli of G-bundles over Curves for exceptional G
- On the existence of hermitian-yang-mills connections in stable vector bundles
- Semiinfinite Flags. II. Local and Global Intersection Cohomology of Quasimaps' Spaces
- Equivariant Gromov - Witten Invariants
- Geometric invariant theory and flips