The Sturm-Liouville Friedrichs extension.
From MaRDI portal
Publication:499019
DOI10.1007/s10492-015-0097-3zbMath1363.47039OpenAlexW2299394227MaRDI QIDQ499019
Anton Zettl, Siqin Yao, Jiong Sun
Publication date: 29 September 2015
Published in: Applications of Mathematics (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/10338.dmlcz/144265
Sturm-Liouville theory (34B24) General spectral theory of ordinary differential operators (34L05) Linear symmetric and selfadjoint operators (unbounded) (47B25) Linear boundary value problems for ordinary differential equations (34B05)
Related Items (8)
The Krein-von Neumann extension of a regular even order quasi-differential operator ⋮ Characterization of symmetric operators and their Friedrichs extension for singular Sturm-Liouville problems ⋮ Selfadjoint and \(m\) sectorial extensions of Sturm-Liouville operators ⋮ Spectral properties of differential-difference symmetrized operators ⋮ Friedrichs extensions of a class of discrete Hamiltonian systems with one singular endpoint ⋮ On self-adjoint boundary conditions for singular Sturm-Liouville operators bounded from below ⋮ Spectral properties of ordinary differential operators admitting special decompositions ⋮ Friedrichs extensions of a class of singular Hamiltonian systems
Cites Work
- Real-parameter square-integrable solutions and the spectrum of differential operators
- Characterization of domains of self-adjoint ordinary differential operators
- Semi-boundedness of ordinary differential operators
- Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. I
- Characterization of domains of self-adjoint ordinary differential operators. II
- The Friedrichs extension of singular differential operators
- Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung
- Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung
- The Friedrichs extension of regular ordinary differential operators
- Singular Sturm-Liouville Problems: The Friedrichs Extension and Comparison of Eigenvalues
- A Characterization of the Friedrichs Extension of Sturm-Liouville Operators
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Sturm-Liouville Friedrichs extension.