On the Iwasawa λ-invariant of the cyclotomic ℤ2-extension of ℚ(pq) and the 2-part of the class number of ℚ(pq,2 + 2)
From MaRDI portal
Publication:4992589
DOI10.1142/S1793042121500160zbMath1468.11224MaRDI QIDQ4992589
Publication date: 9 June 2021
Published in: International Journal of Number Theory (Search for Journal in Brave)
Related Items
On metabelian 2-class field towers over -extensions of real quadratic fields ⋮ The structure of the unramified abelian Iwasawa module of some number fields ⋮ Structure of 2-class groups in the \(\mathbb{Z}_2\)-extensions of certain real quadratic fields
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Iwasawa invariants of the cyclotomic \(\mathbb Z_2\)-extensions of certain real quadratic fields
- A note on Thaine's circular units
- On \({\mathbb{Z}}_ p\)-extensions of real quadratic fields
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- On the Stickelberger ideal and the circular units of an abelian field
- On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields
- On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb Z_2\)-extension of a real quadratic field
- ON THE IWASAWA INVARIANTS OF CERTAIN REAL ABELIAN FIELDS II
- On Γ-extensions of algebraic number fields
- On the Iwasawa Invariants of Totally Real Number Fields
- The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
- On unramified Galois $2$-groups over $\mathbb Z_2$-extensions of real quadratic fields