Hodge theorem for the natural projection of complex horizontal Laplacian on complex Finsler manifolds
DOI10.1016/J.DIFGEO.2014.01.012zbMath1325.53098OpenAlexW2050976386WikidataQ115356358 ScholiaQ115356358MaRDI QIDQ499514
Tongde Zhong, Chunhui Qiu, Jinling Li
Publication date: 30 September 2015
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.difgeo.2014.01.012
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Global submanifolds (53C40) Hodge theory in global analysis (58A14) Global differential geometry of Finsler spaces and generalizations (areal metrics) (53C60)
Related Items (4)
Cites Work
- Bochner technique on strong Kähler-Finsler manifolds
- Laplacian on complex Finsler manifolds
- A vanishing theorem on Kähler Finsler manifolds
- Hodge decomposition theorem on strongly Kähler Finsler manifolds
- Kähler Finsler metrics are actually strongly Kähler
- Finsler metrics - a global approach. With applications to geometric function theory
- Complex spaces in Finsler, Lagrange and Hamilton geometries.
- Horizontal \(\overline\partial\)-Laplacian on complex Finsler manifolds
- The Koppelman-Leray formula on complex Finsler manifolds
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Hodge theorem for the natural projection of complex horizontal Laplacian on complex Finsler manifolds