Semisimple multivariable \(\mathbb {F}_q\)-linear codes over \(\mathbb {F}_{q^l}\)
From MaRDI portal
Publication:499663
DOI10.1007/s10623-014-9994-9zbMath1329.94088OpenAlexW2217610893MaRDI QIDQ499663
Fang-Wei Fu, Jian Gao, Yong-Lin Cao
Publication date: 30 September 2015
Published in: Designs, Codes and Cryptography (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10623-014-9994-9
self-dual codedual codeself-orthogonal codesemisimple abelian \(\mathbb {F}_q\)-linear codesemisimple multivariable \(\mathbb {F}_q\)-linear code
Algebraic coding theory; cryptography (number-theoretic aspects) (11T71) Linear codes (general theory) (94B05) Cyclic codes (94B15)
Related Items (2)
Some optimal cyclic \(\mathbb{F}_q\)-linear \(\mathbb{F}_{q^t}\)-codes ⋮ On MDS geometric \(\mathbb{F}_q\)-linear \(\mathbb{F}_{q^t} \)-codes
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cyclic \(\mathbb F_{q}\)-linear \(\mathbb F_{q^t}\)-codes
- On repeated-root multivariable codes over a finite chain ring
- Important algebraic calculations for \(n\)-variables polynomial codes
- \(\mathbb F_q\)-linear cyclic codes over \(\mathbb F_{q^m}\): DFT approach
- Self-dual \(\mathbb F_q\)-linear \(\mathbb F_{q^t}\)-codes with an automorphism of prime order
- Graph-based classification of self-dual additive codes over finite fields
- On the theory of \(\mathbb{F}_q\)-linear \(\mathbb{F}_{q^t}\)-codes
- Additive semisimple multivariable codes over \(\mathbb{F}_4\)
- On the Classification of Hermitian Self-Dual Additive Codes Over ${\rm GF}(9)$
- Une generalisation de la construction de berman des codes de reed et muller p-aires
- Nonbinary quantum codes
- Quantum error correction via codes over GF(4)
- Cyclic Additive and Quantum Stabilizer Codes
- Multivariable Codes Over Finite Chain Rings: Serial Codes
- Additive cyclic codes over \(\mathbb F_4\)
- Additive cyclic codes over \(\mathbb F_4\)
This page was built for publication: Semisimple multivariable \(\mathbb {F}_q\)-linear codes over \(\mathbb {F}_{q^l}\)