Numerical Approximation of the Displacement Formulation of the Axisymmetric Acoustic Vibration Problem
DOI10.1137/20M1346225zbMath1479.65022OpenAlexW3158130379MaRDI QIDQ4997351
J. Querales, Rodolfo Rodríguez, Pablo Venegas
Publication date: 29 June 2021
Published in: SIAM Journal on Scientific Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1137/20m1346225
Error bounds for boundary value problems involving PDEs (65N15) Stability and convergence of numerical methods for boundary value problems involving PDEs (65N12) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Hydro- and aero-acoustics (76Q05) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Hitchhiker's guide to the fractional Sobolev spaces
- Low-order Raviart-Thomas approximations of axisymmetric Darcy flow
- Approximation of Axisymmetric Darcy Flow Using Mixed Finite Element Methods
- A Simple Introduction to the Mixed Finite Element Method
- Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $
- The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations
- A least‐squares method for axisymmetric div–curl systems
- Finite Element Methods for Navier-Stokes Equations
- A displacement method for the analysis of vibrations of coupled fluid‐structure systems
- On spectral approximation. Part 1. The problem of convergence
- On spectral approximation. Part 2. Error estimates for the Galerkin method
- Finite Element Methods for Maxwell's Equations
- Finite Element Vibration Analysis of Fluid–Solid Systems without Spurious Modes
This page was built for publication: Numerical Approximation of the Displacement Formulation of the Axisymmetric Acoustic Vibration Problem