Computing modular polynomials and isogenies of rank two Drinfeld modules over finite fields
From MaRDI portal
Publication:4998642
DOI10.1090/conm/754/15148zbMath1469.11178OpenAlexW3046517850MaRDI QIDQ4998642
Matthew Greenberg, Perlas C. Caranay, Renate Scheidler
Publication date: 9 July 2021
Published in: 75 Years of Mathematics of Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/conm/754/15148
\(j\)-invariantisogenyendomorphism ringDrinfeld modular polynomialisogeny volcanorank 2 Drinfeld module
Number-theoretic algorithms; complexity (11Y16) Algebraic number theory computations (11Y40) Drinfel'd modules; higher-dimensional motives, etc. (11G09)
Related Items
Cites Work
- Computing isogeny volcanoes of composite degree
- Zur Arithmetik von Drinfeld-Moduln
- On finite Drinfeld modules
- A product expansion for the discriminant function of Drinfeld modules of rank two
- Drinfeld modular curves
- On the coefficients of Drinfeld modular forms
- On the modular equation for Drinfeld modules of rank 2
- On the singular Drinfeld modules of rank 2
- Von Staudt for \(\mathbb F_q[T\)]
- On the coefficients of the Drinfeld modular equation
- On the Drinfeld modular polynomial \(\Phi_ T(X,Y)\)
- Isogenies of Drinfeld modules over finite fields
- Drinfeld modular polynomials in higher rank
- Computing the endomorphism ring of an ordinary elliptic curve over a finite field
- Isogeny volcanoes
- On the evaluation of modular polynomials
- Computing modular polynomials in quasi-linear time
- On the coefficients of the transformation polynomials for the elliptic modular function
- Modular forms for Fr [T.]
- The algebraist’s upper half-plane
- Probabilistic Algorithms in Finite Fields
- ELLIPTIC MODULES
- Polynomial Multiplication over Finite Fields in Time \( O(n \log n \)
- Computing the Characteristic Polynomial of a Finite Rank Two Drinfeld Module
- Modular polynomials via isogeny volcanoes
- Frobenius distributions of Drinfeld modules over finite fields
- Computing Modular Polynomials
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item