A Zermelo navigation problem with a vortex singularity
DOI10.1051/cocv/2020058zbMath1467.49013arXiv1911.01109OpenAlexW3081510378MaRDI QIDQ4999587
Olivier Cots, B. Wembe, Bernard Bonnard
Publication date: 7 July 2021
Published in: ESAIM: Control, Optimisation and Calculus of Variations (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.01109
geometric optimal controlZermelo navigation problemconjugate and cut lociClairaut-Randers metric with polar singularityHelmholtz-Kirchhoff \(N\) vortices model
Variational methods applied to problems in fluid mechanics (76M30) Optimality conditions for problems involving ordinary differential equations (49K15) Variational principles of physics (49S05)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Introduction to Hamiltonian dynamical systems and the \(N\)-body problem.
- Foliations: geometric studies
- Topological methods in hydrodynamics
- Choreographies in the \(n\)-vortex problem
- Zermelo navigation on Riemannian manifolds
- Singular trajectories and their role in control theory
- The cut loci and the conjugate loci on ellipsoids
- Control theory from the geometric viewpoint.
- Optimal control of a co-rotating vortex pair: averaging and impulsive control
- Celestial mechanics and control of space vehicles
- Differential continuation for regular optimal control problems
- Simple Choreographic Motions of N Bodies: A Preliminary Study
- Vortex dynamics models in flow control problems
- Second order optimality conditions in the smooth case and applications in optimal control
- LAGRANGIAN AND LEGENDRIAN SINGULARITIES
- The High Order Maximal Principle and Its Application to Singular Extremals
- Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung
- The cut locus of a Randers rotational 2-sphere of revolution
- Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal
- Vortex Dynamics
- Sufficient Conditions for Optimality and the Justification of the Dynamic Programming Method
- The \(N\)-vortex problem. Analytical techniques
This page was built for publication: A Zermelo navigation problem with a vortex singularity