A Riemann–Hilbert Problem Approach to Infinite Gap Hill's Operators and the Korteweg–de Vries Equation
DOI10.1093/imrn/rnz156zbMath1483.35145arXiv1810.07818OpenAlexW2988245797MaRDI QIDQ5005247
Patrik V. Nabelek, Kenneth T.-R. McLaughlin
Publication date: 9 August 2021
Published in: International Mathematics Research Notices (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1810.07818
Riemann-Hilbert problemSchrödinger equationKorteweg-de Vries equationinverse spectral theoryHill's equationBloch-Floquet solutions
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) KdV equations (Korteweg-de Vries equations) (35Q53) Spectral theory and eigenvalue problems for partial differential equations (35P99) NLS equations (nonlinear Schrödinger equations) (35Q55) Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems (37K35) Riemann-Hilbert problems in context of PDEs (35Q15) Soliton solutions (35C08) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Related Items (4)
This page was built for publication: A Riemann–Hilbert Problem Approach to Infinite Gap Hill's Operators and the Korteweg–de Vries Equation