Existence and multiplicity of solutions for fractional p(x,.)-Kirchhoff-type problems in ℝN
DOI10.1080/00036811.2019.1673373zbMath1470.35386OpenAlexW2977423024MaRDI QIDQ5005409
Elhoussine Azroul, Mohammed Shimi, Abdelmoujib Benkirane
Publication date: 9 August 2021
Published in: Applicable Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/00036811.2019.1673373
compact embeddingFountain theoremsymmetric mountain pass theoremfractional \(p(x, .)\)-Kirchhoff-type problemsgeneralized fractional Sobolev space
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Boundary value problems for PDEs with pseudodifferential operators (35S15) Variational methods for higher-order elliptic equations (35J35) Quasilinear elliptic equations (35J62) Fractional partial differential equations (35R11)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Existence and multiplicity of solutions for \(p(x)\)-Kirchhoff-type problem in \(\mathbb R^N\)
- Hitchhiker's guide to the fractional Sobolev spaces
- Existence and multiplicity of solutions for a \(p(x)\)-Kirchhoff type equation
- Lebesgue and Sobolev spaces with variable exponents
- Multiple solutions for a Kirchhoff-type problem involving the \(p(x)\)-Laplacian operator
- Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations
- On a \(p\)-Kirchhoff equation via Krasnoselskii's genus
- On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent
- Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator
- On nonlocal \(p(x)\)-Laplacian Dirichlet problems
- Existence of solutions for a \(p(x)\)-Kirchhoff-type equation
- A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional \(p(\cdot)\)-Laplacian
- Multiplicity of solutions for a fractional Kirchhoff type problem
- A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations
- Degenerate Kirchhoff problems involving the fractionalp-Laplacian without the (AR) condition
- On an elliptic equation of p-Kirchhoff type via variational methods
- Fractional Sobolev spaces with variable exponents and fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>-Laplacians
- On the Well-Posedness of the Kirchhoff String
- Multiplicity results for the non-homogeneous fractional p -Kirchhoff equations with concave–convex nonlinearities
- Multiplicity results for a class of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Kirchhoff type equations with combined nonlinearities
- Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation
- On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\)